The mass of Zr deposited in the process is 41.4 g.
<h3>What is electrolytic cell?</h3>
An electrolytic cell is a chemical cell which produces electrical energy by non-spontaneous chemical processes.
From the question;
Zr^4+(aq) + 4e ------> Zr(s)
We know that;
91 g of Zr is deposited by 4(96500) C
xg of Zr is deposited by (7.92 × 6.16 × 60 × 60) C
xg = 91 g × (7.92 × 6.16 × 60 × 60) C/4(96500) C
x g = 41.4 g
Learn more about electrolysis: brainly.com/question/12054569
Answer:
Total partial pressure, Pt = 821 mm Hg
Partial pressure of Helium, P1 = 105 mm Hg
Partial pressure of Nitrogen, P2 = 312 mm Hg
Partial pressure of Oxygen, P3 = ? mm Hg
According to Dalton's law of Partial pressures,
Pt = P1 + P2 + P3
So, <u>P3 = 404 mm Hg</u>
A MOLECULE IS MADE OF TWO OR MORE ELEMENTS CHEMICALLY COMBINED IS KNOWN AS A COMPUND.
A MOLECULE IS MADE OF TWO ATOMS IS JUST AN ELEMENT.
A MOLECULE MADE OF TWO OR MORE ELEMENTS IS KNOWN AS A COMPUND.
Answer:
(a) proton
(b) neutron
(c) electron
particles in nucleus are proton and neutron.
atom is electrically neutral because no.of proton= no.of electron=6
Food molecules contain biochemical energy which is made available by a process called respiration.
Respiration is the process within cells by which living things break down food chemicals in their bodies and use them as a source of energy.
The proteins, lipids and polysaccharides that make up most of the food we eat must be broken down into smaller molecules before our cells can use them either as a source of energy or as building blocks for other molecules. This process is named catabolism and occurs in 3 stages.
Stage 1 is the enzymatic breakdown of food molecules in the digestion process into their monomer subunits- amino acids, glucose and glycerol.
Stage 2 is the process of glycolysis where each molecule of glucose is converted to pyruvate.
Stage 3 is production of ATP, the form of energy needed by the body to function. This stage takes place in the mitochondria of the cells. ATP is produced from conversion of pyruvate to acetylCoA in a process called the Citric Acid Cycle.