Question: The question is not complete. Find below the complete question and the answer.
Alab group was supposed to make 14 mL of a 36% acid solution by mixing a 20% solution, a 26% solution, and a 42% solution. However, the 20% solution was mislabeled, and was actually a 10% solution, so the lab group ended up with 14 mL of a 34% acid solution, instead. If the augmented matrix that represents the system of equations is given below, what are the volumes of the solutions that should have been mixed? mL
Volume of 20% solution= ?
Volume of 26% solution = ?
Volume of 42% solution= ? Round to the nearest whole number ml
Answer:
Volume of 20% solution= 3 mL
Volume of 26% solution = 1 mL
Volume of 42% solution= 10 mL
Explanation:
Find attached of the calculations.
- l
- kg
- cm
- gm
- ml
- km,m
- m
- nm
- mg
- ms
- gm
- nm
- .
- .
- l,gm
- .
- kg
- m
- gm,m
- s
Hope this helps :-). And....
ml: milliliter
kg: kilogram
m: meter
mg: milligram
mm: millimeter
ms: millisecond
l: liter
km: kilometer
µg: micro gram
cm: centimeter
g: gram
nm: nano meter
1. For this question, the adjective small must be percepted in a relative sense. This is because it is not the smallest ion (that would be hydrogen). It could be that the antimony and beryllium ions are smaller compared to their neutral forms. This is because they donate electrons when ionized. As a result, the electrons are reduced, so does the electron cloud which makes the radius much smaller.
2. The periodic table is arranged in terms of increasing atomic number. For neutral atoms, the number of protons (atomic number) is equal to the number of electrons. So, the farther we go down the table, the higher the atomic number. The higher the atomic number, the bigger the electron cloud which makes the atomic radius bigger. Because by definition, atomic radius is the length from the nucleus to the farthest electron from the nucleus.
Private school and the cashapp one of my favorite classes and I can get it
Answer:
<h2>Scientists use a wide variety of techniques to monitor volcanoes, including seismographic detection of the earthquakes and tremor that almost always precede eruptions, precise measurements of ground deformation that often accompanies the rise of magma, changes in volcanic gas emissions, and changes in gravity.</h2>