Answer:

Explanation:
Hello!
In this case, since the by-mass percent of a solution is a measure of the mass of the solute over the mass of the solution:

As we know the mass of the solution and the by-mass percent, we can compute the mass of glucose in the 480 g of solution:

Thus, by plugging in the data, we obtain:

Finally, since the solution is made up of glucose and water, we compute the mass of water as follows:

Best regards!
Answer:
A. Biodiversity can increase the rate of extinction
Explanation:
That statement is false because variety is better for a better ecosystem. With variety more can survive in certain situations that others cant.
Answer:
The mass of N a H C O 3 present is 2.431 g
Explanation:
The sample contains 57.2 % N a H C O 3 by mass.
To find the mass of N a H C O 3 in the sample, we need to find what the equivalent of 57.2 %.
Mass of N a H C O 3 = Percentage Composition * Mass of sample
Mass of N a H C O 3 = 57.2 / 100 * 4.25
Mass of N a H C O 3 = 2.431 g
The mass of N a H C O 3 present is 2.431 g
Answer:
0.886 J/g.°C
Explanation:
Step 1: Calculate the heat absorbed by the water
We will use the following expression
Q = c × m × ΔT
where,
- c: specific heat capacity
- ΔT: change in the temperature
Q(water) = c(water) × m(water) × ΔT(water)
Q(water) = 4.184 J/g.°C × 50.0 g × (34.4 °C - 25.36 °C) = 1.89 × 10³ J
According to the law of conservation of energy, the sum of the energy lost by the solid and the energy absorbed by the water is zero.
Q(water) + Q(solid) = 0
Q(solid) = -Q(water) = -1.89 × 10³ J
Step 2: Calculate the specific heat capacity of the solid
We will use the following expression.
Q(solid) = c(solid) × m(solid) × ΔT(solid)
c(solid) = Q(solid) / m(solid) × ΔT(solid)
c(solid) = (-1.89 × 10³ J) / 32.53 g × (34.4 °C - 100. °C) = 0.886 J/g.°C
<h2>Steps:</h2>
- Remember that Density = mass/volume, or D = m/v
So firstly, we have to find the volume of the rock. To do this, we need to subtract the volume of water A from the volume of the water B. In this case:
- Water A = 30 mL
- Water B = 40 mL
- 40 mL - 30 mL = 10 mL
<u>The volume of the rock is 10 mL.</u>
Now that we have the volume, we can plug that and the density of the rock into the density equation to solve for the mass.

For this, multiply both sides by 10:

<h2>Answer:</h2>
<u>Rounding to the tenths place, the mass of the rock is 36.8 g, or C.</u>