Your answer will be letter c
Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4
I flew past the whip with that blunt in my mouth
Watch the swervin', that whip had a cop in it (Woo)
A plausible guess might be that the sequence is formed by a degree-4* polynomial,

From the given known values of the sequence, we have

Solving the system yields coefficients

so that the n-th term in the sequence might be

Then the next few terms in the sequence could very well be

It would be much easier to confirm this had the given sequence provided just one more term...
* Why degree-4? This rests on the assumption that the higher-order forward differences of
eventually form a constant sequence. But we only have enough information to find one term in the sequence of 4th-order differences. Denote the k-th-order forward differences of
by
. Then
• 1st-order differences:

• 2nd-order differences:

• 3rd-order differences:

• 4th-order differences:

From here I made the assumption that
is the constant sequence {15, 15, 15, …}. This implies
forms an arithmetic/linear sequence, which implies
forms a quadratic sequence, and so on up
forming a quartic sequence. Then we can use the method of undetermined coefficients to find it.
Answer:
...
Step-by-step explanation: