Answer:
2.52 x
J
Explanation:
The energy given off by the microwave can be determined by the application of Planck's energy formula:
E = hf
where: E is the required energy, h is Planck's constant (6.626 x 
Kg/s), and f is the frequency (3.8 x
Hz).
So that;
E = 6.626 x
x 3.8 x 
= 2.51788 x 
Therefore, the energy released by the wave is 2.52 x
J.
<h3>
Answer:</h3>
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
<h3>
Explanation:</h3>
We are given the Equation;
CaCl₂ + Na₃PO₄→ Ca₃(PO₄)₂ + NaCl
Assuming the question requires us to balance the equation;
- A balanced chemical equation is one that has equal number of atoms of each element on both sides of the equation.
- Balancing chemical equations ensures that they obey the law of conservation of mass in chemical equations.
- According to the law of conservation of mass in chemical equation, the mass of the reactants should always be equal to the mass of the products.
- Balancing chemical equations involves putting appropriate coefficients on the reactants and products.
In this case;
- To balance the equation we are going to put the coefficients 3, 2, 1, and 6.
- Therefore; the balanced equation will be;
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
the answer would be B an atom that has lost an electron
It takes more energy to breakdown the bonds