The combustion of methane, CH4, releases 890.4 kJ/mol. That is, when one mole of methane is burned, 890.4 kJ are given off to the surroundings. This means that the products have 890.4 kJ less than the reactants.
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
The molecular element describes the amount of protons, neutrons, and electrons found in an atom
An atomic element is the subject in the formula such as ... sulfur, carbon, or oxygen
The substance has a higher density than water