Answer:
300000Pa or 3×10^5 Pa
Explanation:
Since the problem involves only two parameters of volume and pressure, the formula for Boyle's law is suitably used.
Using Boyle's law
P1V1 = P2V2
P1 is the initial pressure = 1.5×10^5Pa
V1 is the initial volume = 0.08m3
P2 is the final pressure (required)
V2 is the final volume = 0.04 m3
From the formula, P2 = P1V1/V2
P2 = 1.5×10^5 × 0.08 ÷ 0.04
= 300000Pa or 3×10^5 Pa.
High tides and low tides are caused by the moon. The moon's gravitational pull generates something called the tidal force. The tidal force causes Earth—and its water—to bulge out on the side closest to the moon and the side farthest from the moon. These bulges of water are high tides.
Answer:
Average atomic mass = 15.86 amu.
Explanation:
Given data:
Number of atoms of Z-16.000 amu = 205
Number of atoms of Z-14.000 amu = 15
Average atomic mass = ?
Solution:
Total number of atoms = 205 + 15 = 220
Percentage of Z-16.000 = 205/220 ×100 = 93.18%
Percentage of Z-14.000 = 15/220 ×100 = 6.82 %
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (93.18×16.000)+(6.82×14.000) /100
Average atomic mass = 1490.88 + 95.48 / 100
Average atomic mass = 1586.36 / 100
Average atomic mass = 15.86 amu.
Work Done = force x displacement. So in this case the 15N is the force (because weight is a force) and 0.60m is the displacement. Therefore 15 x 0.6 = 9 Joules of work done (btw, work done can also be referred to as energy transferred)
Answer:
the amount of reactants is always directly proportional to the product
Explanation: