1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
2 years ago
12

An electron with charge −e and mass m moves in a circular orbit of radius r around a nucleus of charge Ze, where Z is the atomic

number of the nucleus. Ignore the gravitational force between the electron and the nucleus. Find an expression in terms of these quantities for the speed of the electron in this orbit. (Use any variable or symbol stated above along with the following as necessary: k for Coulomb's constant.)
Physics
1 answer:
shepuryov [24]2 years ago
6 0

Answer:

v=\sqrt{\frac{kZe^2}{mr}}

Explanation:

The electrostatic attraction between the nucleus and the electron is given by:

F=k\frac{(e)(Ze)}{r^2}=k\frac{Ze^2}{r^2} (1)

where

k is the Coulomb's constant

Ze is the charge of the nucleus

e is the charge of the electron

r is the distance between the electron and the nucleus

This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:

F=m\frac{v^2}{r} (2)

where

m is the mass of the electron

v is the speed of the electron

Combining the two equations (1) and (2), we find

k\frac{Ze^2}{r^2}=m\frac{v^2}{r}

And solving for v, we find an expression for the speed of the electron:

v=\sqrt{\frac{kZe^2}{mr}}

You might be interested in
PLEASE HELP ME!!!
klasskru [66]

1.velocity and acceleration

2.

3.inertia

4.

5.speed

4 0
2 years ago
Romeo traveled by a 900 kg horse from Manitua to Verona accelerating at the rate of 20 km/hr. With what force is Romeo moving at
Nookie1986 [14]

Answer:

Force(Romeo moving) = 5,000 N

Explanation:

Given:

Mass of horse = 900 kg

Acceleration = 20 km/hr

Find:

Force(Romeo moving)

Computation:

Acceleration = 20 km/hr

Acceleration in m/s = 20 / 3.6 = 5.555556 m/s²

Force = m x a

Force(Romeo moving) = 900 x 5.555556

Force(Romeo moving) = 5,000 N

3 0
3 years ago
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
Exposure to the Sun's harmful infrared radiation should be kept to a minimum.
zysi [14]

Of course! If it's harmful, then your exposure to it should be kept
to a minimum.  That's a no-brainer.  But the sun's infrared radiation
is generally less harmful than its ultraviolet radiation is.

7 0
3 years ago
-A 180 kg hippo is riding a bicycle at a speed of 6.0
Vlad1618 [11]

Answer:

0.0675 seconds

Explanation:

From the question,

We apply newton's second law of motion

F = m(v-u)/t.................... Equation 1

Where F = force exert by the brake, v = final speed, u = initial speed m = mass of the bicycle, t = time.

make t the subject of the equation

t = m(v-u)/F................... Equation 2

Given: m = 180 kg, u = 6.0 m/s, v = 0 m/s (comes to stop), F = -1600 N ( agianst the dirction of motion)

Substitute these value into equation 2

t = 180(0-6.0)/-1600

t = -1080/-1600

t = 0.0675 seconds.

8 0
2 years ago
Other questions:
  • At a baseball game, the batter hit a fly ball at time t = 0 s. The outfielder caught the ball at t = 5.8 s. When was the ball at
    9·2 answers
  • The potential-energy function u(x) is zero in the interval 0≤x≤l and has the constant value u0 everywhere outside this interval.
    6·1 answer
  • A comet is traveling through space with speed 3.01 ✕ 104 m/s when it encounters an asteroid that was at rest. The comet and the
    8·1 answer
  • What differences does adult and infant skulls have in number of bones,composition
    12·1 answer
  • Figure 3 shows a stationary metal block hanging from the middle of a stretched wire which is suspended from a horizontal beam. T
    13·1 answer
  • What is the next step if the data from an investigation do not support the original hypothesis? A. The data are revised to suppo
    8·2 answers
  • David hops in his 600-kg dune buggy and travels 20 m/s to the east.  Meanwhile, Serap drives her 500-kg dune buggy at 30 m/s eas
    11·1 answer
  • Help on these 2 pls ASAP!!!!!!<br><br> BTW ITS A SCI QUESTION
    9·2 answers
  • Can you list the offensive position on a flag football team?
    5·1 answer
  • A sound wave has a wavelength of 15 meters with a frequency of 2.5 Hz. What would the velocity be for this situation in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!