Answer:
The speed of the 8-ball is 2.125 m/s after the collision.
Explanation:
<u>Law Of Conservation Of Linear Momentum</u>
The total momentum of a system of masses is conserved unless an external force is applied. The momentum of a body with mass m and velocity v is calculated as follows:
P=mv
If we have a system of masses, then the total momentum is the sum of all the individual momentums:

When a collision occurs, the velocities change to v' and the final momentum is:

In a system of two masses, the law of conservation of linear momentum is simplified to:

The m1=0.16 Kg 8-ball is initially at rest v1=0. It is hit by an m2=0.17 Kg cue ball that was moving at v2=2 m/s.
After the collision, the cue ball comes to rest v2'=0. It's required to find the final speed v1' after the collision.
The above equation is solved for v1':




The speed of the 8-ball is 2.125 m/s after the collision.
It looks like they are all units of measurement:
FOOT - POUND - NEWTON - METER
Ok so I’m pretty sure the answer would be 2 because the mass of the rock would have the same mass on Earth as it has on the moon. Also the Density of a solid object remains constant meaning it doesn’t change. But the weight would change because the Earths gravitational pull is more than that of the moon. I hope this helped!
Answer:
207.4 N
Explanation:
The torque
on a body is
where r is the radius vector from the point of rotation to the point at which force F is applied.
The product of r and F is equal to the product of magnitude of r and F multiplied by the sine of angle between both vectors.
Therefore, torque is also given by
Where
is the angle between r and F.
Use the expression of torque.
Substitute L for r in the equation
Where L is the length of the wrench.
Making F the subject
Force required to pull the wrench is given as,
Substitute
for
, 25 cm for L, and 115o for