Answer:
Following are the solution to the given question:
Explanation:
The input linear polarisation was shown at an angle of
. It's a very popular use of a half-wave plate. In particular, consider the case
, at which the angle of rotation is
. HWP thereby provides a great way to turn, for instance, a linear polarised light that swings horizontally to polarise vertically. Illustration of action on event circularly polarized light of the half-wave platform. Customarily it is the slow axis of HWP that corresponds to either the rotation. Note that perhaps the vector of polarization is "double-headed," i.e., the electromagnetic current swinging back and forward in time. Therefore the turning angle could be referred to as the rapid axis to reach the same result. Please find the attached file.
Answer:
hmax=81ft
Explanation:
Maximum height of the object is the highest vertical position along its trajectory.
The vertical velocity is equal to 0 (Vy = 0)

we isolate th (needed to reach the maximum height hmax)

The formula describing vertical distance is:

So, given y = hmax and t = th, we can join those two equations together:


if we launch a projectile from some initial height h all you need to do is add this initial elevation


Answer:
What is the correct path of sperm cells through the male reproductive system?
Epididymis, seminiferous tubules, urethra, vas deferens
<u>Seminiferous tubules, epididymis, vas deferens, urethra
</u>
Urethra, seminiferous tubules, epididymis, vas deferens
Seminiferous tubules, vas deferens, epididymis, urethra
Hope this helps :)
Have a great day !
5INGH
Explanation:
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
According to the statement " Collision <span>between two bodies in which the total kinetic energy of the two bodies after the collision is equal to their total kinetic energy before the collision."
The best answer is :
Option A " </span><span>BODY A COMES TO REST BODY B STARTS MOVING WITH INITIAL VELOCITY OF BODY A "</span>