Answer:
36,67 degrees Celsius
Explanation:
The simplest way to approach this problem, given the information provided, is to simply start with the speed difference.
Goal: 353 m/s
Start: 343 m/s (at 20 degrees Celsius).
Difference: 10 m/s
Variation rate: 0.60 m/s/d (d = degree)

So, 16,67 degrees more than the starting point.
The temperature will then be 36.67 degrees Celsius, when the sound travels at the speed of 353 m/s.
Answer:
Work done, W = 5534.53 J
Explanation:
It is given that,
Force acting on the piano, F = 6157 N
It is pushed up a distance of 2.41 m friction less plank.
Let W is the work done in sliding the piano up the plank at a slow constant rate. It is given by :

Since,
(in vertical direction)

W = 5534.53 J
So, the work done in sliding the piano up the plank is 5534.53 J. Hence, this is the required solution.
Answer:
less
Explanation:
Sliding friction is always less than static friction. This is because in sliding friction, the bodies slide with each other and thus the effect of friction is not more. However, it does not happen in the case of static friction.
<span>the moon is a satellite of the earth, and the earth is a satellite of the sun.
that is the best answer</span>