Answer:
P(B|A)=0.25 , P(A|B) =0.5
Step-by-step explanation:
The question provides the following data:
P(A)= 0.8
P(B)= 0.4
P(A∩B) = 0.2
Since the question does not mention which of the conditional probabilities need to be found out, I will show the working to calculate both of them.
To calculate the probability that event B will occur given that A has already occurred (P(B|A) is read as the probability of event B given A) can be calculated as:
P(B|A) = P(A∩B)/P(A)
= (0.2) / (0.8)
P(B|A)=0.25
To calculate the probability that event A will occur given that B has already occurred (P(A|B) is read as the probability of event A given B) can be calculated as:
P(A|B) = P(A∩B)/P(B)
= (0.2)/(0.4)
P(A|B) =0.5
^ You again? Quit being sus and answer the question here instead of elsewhere.
To find the mean, all you have to do is add each number and then divide by how many numbers you added.
So, 38 + 29 + 16 + 42 + 33 = 158. There were five numbers added, so the next step is to divide 158 by 5. That equals 31.6 as your answer.
9514 1404 393
Answer:
a) E = 6500 -50d
b) 5000 kWh
c) the excess will last only 130 days, not enough for 5 months
Step-by-step explanation:
<u>Given</u>:
starting excess (E): 6500 kWh
usage: 50 kWh/day (d)
<u>Find</u>:
a) E(d)
b) E(30)
c) E(150)
<u>Solution</u>:
a) The exces is linearly decreasing with the number of days, so we have ...
E(d) = 6500 -50d
__
b) After 30 days, the excess remaining is ...
E(30) = 6500 -50(30) = 5000 . . . . kWh after 30 days
__
c) After 150 days, the excess remaining would be ...
E(150) = 6500 -50(150) = 6500 -7500 = -1000 . . . . 150 days is beyond the capacity of the system
The supply is not enough to last for 5 months.
Answer:
Step-by-step explanation:
Calculation
Divide your interest rate by the number of payments you'll make that year. ...
Multiply that number by your remaining loan balance to find out how much you'll pay in interest that month. ...
Subtract that interest from your fixed monthly payment to see how much in principal you will pay in the first month.