Answer:
A) 350 N
B) 58.33 N
C) 35 kg
D) 35 kg
Explanation:
If we use that g = 10 m/s^2, then the acceleration of gravity on the Moon will be 10/6 m/s^2 = 5/3 m/s*2
The weight of the object on Earth is given by:
Weight = mass * g = 35 * 10 = 350 N
The weight of the object on the Moon:
Weight = mass * gmoon = 35 * 5/3 = 58.33 N
The mass of the object on Earth is 35 kg
The mass of the object on the Moon is exactly the same as on the Earth (35 kg) since the mass is a quantity inherent to the object and not to its location.
Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
Oxygenated blood that has oxygen in them while de-oxygenated blood has carbon dioxide. in which the oxygenated blood carries the oxygen throughout the body since that cells need oxygen to function. called "gas exchange." once the cells got their required oxygen. the carbon dioxide needs somewhere to go, thus having deoxygenated blood. and that carbon dioxide needs to get out of the body
4. Grass - Caterpillar - Hedgehog - Fox
5. Caterpillar, Rabbit, Mouse.
6. Cougar and Fox.
7. Bacteria
8. The bird, hedgehog, Fox and cougar would be effected since the Hedgehogs and birds would soon die out due to the loss of their food. Once they die out, the cougar and Fox would have no predators left to eat.
Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>