1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
3 years ago
12

Which is larger 0.7 or 3/5?

Mathematics
2 answers:
Ghella [55]3 years ago
7 0
You can figure this out by turning \frac{3}{5} into a decimal you do that by dividing the numerator by the denominator so 3 divided by 5 equals 0.6 so now which is grater 0.7 or 0.6 
0.7 is greater than \frac{3}{5}
postnew [5]3 years ago
5 0
0.7 = 7/10 (decimal to fraction)

3/5 = 6/10 (multiplied by 2 to create a common denominator)

So 0.7 is larger
You might be interested in
Which type of triangle is best
Andrews [41]
Equilateral triangle- Where each angle of the triangle is measured equally.

Scalene triangle- A triangle where all angles are unequal.

Isosceles triangle- A triangle where two angles are equal.

Right triangle- A triangle with a right angle or 90° angle.

Now your question is what is the best triangle. That is an opinion question so I can't say. But out of the triangles above you could pick which one you think is the best :)
4 0
3 years ago
A family went to a baseball game. They parked the car in a parking lot which charged​ $5. The cost per ticket was​ $21. Write an
ser-zykov [4K]

Answer:

y=21x+5

Step-by-step explanation:

4 0
3 years ago
The second of two numbers is 4 times the first. their sum is 50. find the numbers
Sphinxa [80]

Answer:

The first number is 10, and the second is 40.

Step-by-step explanation:

X is equivalent to 10, and the equation for this question is x + 4x = 50. Therefore, 5x = 50. If you divide both sides by 5, you get x = 10. This means the first number is 10, and since the second is 4 times that, 4*10 = 40. 40 + 10 = 50, to check.

4 0
3 years ago
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
Irrational numbers can never be precisely represented in decimal form, why is this?
tatyana61 [14]
Because most of them keep on going for infinite. For example, \pi is an irrational number that goes on forever 3.14159 etc etc etc
3 0
3 years ago
Other questions:
  • Andrew earned $125.00 last year on his investment of $10,000.00
    13·2 answers
  • Hiro rolls a fair pair of six-sided dice. The sample space of all possible outcomes is shown below. Let AAA be the event that th
    8·1 answer
  • How do i write, the sum of 2 and -3 decreased by 7
    9·2 answers
  • Plz answer and write the question number and the answer next to it plzzzz
    14·2 answers
  • a playground is a rectangular with a length of 1/2.if the area of the playground is 5/8 square miles what is the width
    8·2 answers
  • How can a equation have many solutions
    6·1 answer
  • Are non-empty sets and A × B = B × A then ……
    10·1 answer
  • I understand this question is really easy but the answer I found isn't one of the options and I have spent 30 minutes on this as
    10·1 answer
  • Simplify.
    11·2 answers
  • For question 6 find the value of m and p
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!