D=s*t
distaance=speed times time
cd=coyote distance*time=ds*dt
rd=rabbit diatance*time=rs*rt
given
t=6 for all, so dt=rt=6
and ds=43
rs=35
cd=43*6=258miles
rd=35*6=210miles
how much more?
258-210=48
48 more miles
Answer:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%20%5Cfrac%7B9x%5E%7B10%7D%7D%7Bx%5E2%20%2B%201%7D)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle f(x) = 9x^{10} \tan^{-1}(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%28x%29%20%3D%209x%5E%7B10%7D%20%5Ctan%5E%7B-1%7D%28x%29)
<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B9x%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%209%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Basic Power Rule:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Arctrig Derivative:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%20%5Cfrac%7B9x%5E%7B10%7D%7D%7Bx%5E2%20%2B%201%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
9ab - 9a +1
Step-by-step explanation:
first, we can distribute the negative sign to the second set of parentheses.
-(-4ab + 5) becomes + 4ab - 5
now let's put the values in (5ab-9a-4) side by side with the corresponding values in + 4ab - 5
5ab + 4ab - 9a - 4 - 5
= 9ab - 9a - 9, because 5ab + 4ab = 9ab, -9a is alone, and -4 - 5 = -9.
(A) is your answer
In this case, only rotational symmetry can work, with a turn of 180°
hope this helps