You can buy 36 cookies<span> in 11 </span><span>ways</span>
Answer:
Option A
Step-by-step explanation:
Given expression:
<u>Option A</u>
⇒ (x - 4)(3x + 2)
⇒ (x × 3x) + (2 × x) + (-4 × 3x) + (-4 × 2)
⇒ (3x²) + (2x) + (-12x) + (-8)
⇒ 3x² + 2x - 12x - 8
⇒ 3x² - 10x - 8
3x² - 10x - 8 = 3x² - 10x - 8 (Yes!)
<u>Option B</u>
⇒ (3x - 4)(x - 2)
⇒ (3x × x) + (3x × -2) + (-4 × x) + (-4 × -2)
⇒ (3x²) + (-6x) + (-4x) + (8)
⇒ 3x² - 6x - 4x + (8)
⇒ 3x² - 10x + 8
3x² - 10x - 8 = 3x² - 10x + 8 (No!)
<u>Option C</u>
⇒ (3x - 4)(x + 2)
⇒ (3x × x) + (3x × 2) + (-4 × x) + (-4 × 2)
⇒ (3x²) + (6x) + (-4x) + (-8)
⇒ 3x² + 6x - 4x - 8
⇒ 3x² + 2x - 8
3x² - 10x - 8 = 3x² + 2x - 8 (No!)
<u>Option D</u>
⇒ (3x - 2)(x - 4)
⇒ (3x × x) + (3x × -4) + (-2 × x) + (-2 × -4)
⇒ (3x²) + (-12x) + (-2x) + (8)
⇒ 3x² - 12x - 2x + 8
⇒ 3x² - 14x + 8
3x² - 10x - 8 = 3x² - 14x + 8 (No!)
Since the expression of option A has the same value as the given expression, option A is correct.
Answer: 63 square units
Step-by-step explanation:
Area of a parellelogram = b x h
7 x 9 = 63 square units
Arithmetic, nth = a + (n - 1)d, common difference, d = 5
a₁₂ = a + (12 -1)d = 63
<span>a + 11d = 63
</span>
a + 11*5 = 63
a = 63 - 11*5
a = 63 - 55
a = 8
So the nth term = a + (n - 1)d = 8<span> + (n - 1)5
8 + 5*(n - 1)
8 + 5n - 5
8 - 5 + 5n
3 + 5n
<span>So nth term = 3 + 5n</span></span>