Answer: Precision is a measure of how close a series of measurements are to one another. Precise measurements are highly reproducible, even if the measurements are not near the correct value. Darts thrown at a dartboard are helpful in illustrating accuracy and precision
Explanation: a if this wrong u fault u gave no detail
Answer:
The most common elements, like carbon and nitrogen, are created in the cores of most stars, fused from lighter elements like hydrogen and helium. The heaviest elements, like iron, however, are only formed in the massive stars which end their lives in supernova explosions.
Answer:
The volume of the solid shows no change
Explanation:
Pressure only affects gaseous system. This is because the force of cohesion between the gaseous molecules are negligible(i.e very small) and their molecules are far apart hence the gaseous molecules are easily compressed. But for solid, the Particles are very close and tightly packed together with a strong force of cohesion hence pressure has no effect on it. This account for the definite shape and definite volume of solid
To answer this question, we will use the general gas law which states that:
PV = nRT where:
P is the pressure of the gas = <span>10130.0 kPa
</span>V is the volume of the gas = 50 liters
n is the number of moles that we want to calculate
R is the gas constant = <span>8.314 L∙kPa/K∙mol
T is the temperature = 300+273 = 573 degree kelvin
Substitute with the givens in the equation to get the number of moles as follows:
</span><span>10130 * 50 = n * 8.314 * 573
506500 = 4763.922 n
n = </span>506500 / 4763.922
n = 106.3199 moles
Answer:
134.8 mmHg is the vapor pressure for solution
Explanation:
We must apply the colligative property of lowering vapor pressure, which formula is: P° - P' = P° . Xm
P° → Vapor pressure of pure solvent
P' → Vapor pressure of solution
Xm → Mole fraction for solute
Let's determine the moles of solute and solvent
17.5 g . 1 mol/180 g = 0.0972 moles
82 g . 1mol / 32 g = 2.56 moles
Total moles → moles of solute + moles of solvent → 2.56 + 0.0972 = 2.6572 moles
Xm → moles of solute / total moles = 0.0972 / 2.6572 = 0.0365
We replace the data in the formula
140 mmHg - P' = 140 mmHg . 0.0365
P' = - (140 mmHg . 0.0365 - 140mmHg)
P' = 134.8 mmHg