Answer:
Moles of silver iodide produced = 1.4 mol
Explanation:
Given data:
Mass of calcium iodide = 205 g
Moles of silver iodide produced = ?
Solution:
Chemical equation:
CaI₂ + 2AgNO₃ → 2AgI + Ca(NO₃)₂
Number of moles calcium iodide:
Number of moles = mass/ molar mass
Number of moles = 205 g/ 293.887 g/mol
Number of moles = 0.7 mol
Now we will compare the moles of calcium iodide with silver iodide.
CaI₂ : AgI
1 : 2
0.7 : 2×0.7 = 1.4
Thus 1.4 moles of silver iodide will be formed from 205 g of calcium iodide.
Answer:
Chemistry plays an important and useful role towards the development and growth of a number of industries. This includes industries like glass, cement, paper, textile, leather, dye etc. We also see huge applications of chemistry in industries like paints, pigments, petroleum, sugar, plastics, Pharmaceuticals.
Okay, so even if I just gave you the answers, your teacher needs work on it too so it'll be easier/better if I just explain how to do it.
Basically, both sides need to have the same number of molecules. To do this, we make charts. This is the first side of number one:
Na - 1
Mg- 1
F - 2
The subscript gives F two molecules, and the other ones only each have one. This is the second side:
Na- 1
Mg- 1
F- 1
So they're not equal. To fix this, we add coefficients. These are numbers that are going to appear in the front of each compound/element and changes the number of molecules of the WHOLE compound/element. We need two F on the second side, so we'll put a coefficient of 2 in front of NaF. The new chart for the second side is this:
Na- 2
Mg- 1
F- 2
Now we've fixed the F, but now Na is off! So let's go to the first side again and see what we can do. We can put a 2 in front of the Na. The new chart is this:
Na- 2
Mg -1
F- 2
Now both sides are the same. The full new equation is:
2Na + MgF(sub2) = 2NaF + Mg
Basically, do this for all of them. Feel free to ask more questions.
Answer: It gets wasted in various forms.
Explanation: The most common way of this energy being wasted is called "waste heat".
Waste heat is the unused heat given to the surrounding environment (in the form of thermal energy) by a heat engine in a thermodynamic process (like a chemical reaction as you said) in which it converts heat to useful work.