Answer:
the answer to your question is 4 cm long
Explanation:
Answer:
L = 41.09 Kg m2 / s The angular momentum does not depend on the time
Explanation:
The definition of angular momentum is
L = r x p
Where blacks indicate vectors
Let's apply this definition our case. Linear momentum
p = m v
Let's replace
L = m r x v
The given function is
x = 6.00 i ^ + 4.15 t j
^
We look for speed
v = dx / dt
v = 0 + 4.15 j ^
To evaluate the angular momentum one of the best ways is to use determinants
![L = m \left[\begin{array}{ccc}i&j&k\\6&4.15t&0\\0&4.15&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20m%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C6%264.15t%260%5C%5C0%264.15%260%5Cend%7Barray%7D%5Cright%5D)
L = m 6 4.15 k ^
The other products give zero
Let's calculate
L = 1.65 6 4.15 k ^
L = 41.09 Kg m2 / s
The angular momentum does not depend on the time
Answer:
The uncertainty in momentum changes by a factor of 1/2.
Explanation:
By Heisenberg's uncertainty principle, ΔpΔx ≥ h/2π where Δp = uncertainty in momentum and Δx = uncertainty in position = 0.2 nm. The uncertainty in momentum is thus Δp ≥ h/2πΔx. If the uncertainty in position is doubled, that is Δx₁ = 2Δx = 0.4 nm, the uncertainty in momentum Δp₁ now becomes Δp₁ ≥ h/2πΔx₁ = h/2π(2Δx) = (h/2πΔx)/2 = Δp/2.
So, the uncertainty in momentum changes by a factor of 1/2.
<em>Steel: 11.0 – 12.5</em>
<em>T̶e̶t̶s̶u̶t̶e̶t̶s̶u̶ ̶T̶e̶t̶s̶u̶t̶e̶t̶s̶u̶</em>
Thanks,
<em>Deku ❤</em>