plastics, Styrofoam hOPE THIS HELPS
Speed uses distance and velocity uses displacement in its calculation.
For 100 m race, distance = displacement. Hence speed = velocity
For 400m race, distance ≠ displacement. distance = 400m whereas displacement = 0m. Hence speed ≠ velocity
Answer: That's air resistance.
Explanation: Well, air resistance is an upward force exerted on falling objects.
( I hope this helped <3 )
Answer:
Force on the object is 20 N
Explanation:
As we know that work done to raise the book from initial position to final position is known as potential energy stored in it
So here we know that

here we know that
U = 30 J
s = displacement = 1.5 m
so we have


complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N