High pressure<span> is associated with sinking air, and </span>low pressure<span> is associated with </span>rising air t<span>he opposite occurs with </span>high pressure<span>. Air is moving away from the </span>high pressure<span> center at the surface so as a result, air from above must </span>sink <span>to take its place.</span>
Explanation:
Two objects that only have the force of gravity acting on them, will fall with the same acceleration <span>g=9.8<span>m<span>s2</span></span>; g=32.2<span><span>ft</span><span>s2</span></span></span> and will therefore hit the ground at the same time.
When you drop a feather, air resistance acts on all the surfaces of the feather. This causes the feather to slow down.
Air resistance depends on two factors: the speed of the object (increased for example by throwing it), and its surface area.
hope this can give u a little bet more to know about how to get ur answer :P
have a gud day and gud luck!
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find
