You can compare the velocity of the car, 60 mph, with the velocity that a mass would acquire when falls from certain height.
First, convert 60 mph to m/s:
60 miles/h * 1.60 km/mile * 1000 m/km * 1h/3600s = 26.67 m/s
Second, calculate from what height a body in free fall reachs 26.67 m/s velocity when hits the floor.
free fall => Vf^2 = 2g*H => H = Vf^2 / (2g)
H = (26.67m/s)^2 / (2*9.8 m/s) = 36.2 m
If you consider that the height between the floors of a building is approximately 3.6 m, you get 36.2 m / 3.6 m/floor = 10 floors.
Then, you conclude that the force of impact is the same as driving you vehicle off a 10 story building.
Answer:
Explanation:
The direction of force will be in upward direction making an angle of θ with the vertical .
Reaction force R = mg - F cosθ
Friction force = μR
= .36 (mg - F cosθ )
Horizontal component of applied force
= F sinθ
For equilibrium
F sinθ = .36 (mg - F cosθ)
F sinθ + .36 F cosθ =.36 mg
F (sinθ + .36 cosθ) = .36 mg
F R( cosδsinθ +sinδ cosθ) = .36 mg ( Rcosδ = 1 . Rsinδ= .36 )
F R sin( θ+δ ) = . 36 mg
F = .36 mg / Rsin( θ+δ )
For minimum F , sin( θ+δ ) should be maximum
sin( θ+ δ ) = sin 90
θ+ δ = 90
Rsinδ / Rcosδ = .36
δ = 20⁰
θ = 70⁰ Ans
Answer:

Explanation:
Given that,
A radio wave transmits 38.5 W/m² of power per unit area.
A flat surface of area A is perpendicular to the direction of propagation of the wave.
We need to find the radiation pressure on it. It is given by the formula as follows :

Where
c is speed of light
Putting all the values, we get :

So, the radiation pressure is
.
Answer:
it snaps
Explanation:
the more force you put on it, the wired out it gets than it snaps. I think