Answer:
40 ms¯².
Explanation:
To solve this problem, we shall illustrate the question with a diagram.
The attached photo gives a better understanding of the question.
From the attached photo:
Velocity (v) = 160 ms¯¹
Time (t) = 4 secs.
Acceleration (a) =?
Acceleration (a) = Velocity (v) /time (t)
a = v/t
a = 160/4
a = 40 ms¯²
Therefore, the initial acceleration of the rocket is 40 ms¯².
The acceleration should be a gain of 2 km/h per second
Answer:
The angle of the incline above horizontal is 17.81 degrees.
Explanation:
Given that,
Mass of the object, m = 4 kg
Acceleration of the object above the incline, 
We need to find the angle of the incline above horizontal. The net force acting on the object along the incline is given by :






So, the angle of the incline above horizontal is 17.81 degrees. Hence, this is the required solution.
Answer:
The final pressure of oxygen gas is 8.33 atm.
Explanation:
From the given data
V=26 m^3 or 26000 L
T1=270K
T2=440K
n1=6000 moles
R=0.0821 L.atm/molK
Now from the ideal gas equation

As the options given are not defined in which unit thus the final pressure of oxygen gas is 8.33 atm.
<em>*The options are provided for a different question where </em>
Answer:
Yes, it will float.
Explanation:
It is given that,
A liquid has a density of 0.85 g/cm³.
We know that, the density of water is 1 g/cm³.
The density of the liquid is less than that of water. If the density of the liquid is less than that of water, it will float in it. Hence, if you pour some of the liquid into a glass of water, it will float.