Answer:
See explanation.
Explanation:
If both stars explode in simultaneously in the <em>your </em>frame of reference then obviously you will see the two flashes simultaneously, and therefore, the time difference between the events would be zero.
If however, the stars exploded simultaneously in their frame of reference, then you would not observe the flashes simultaneously. Then the time difference between the events will not be zero, rather, you will observe star B exploding first and star A after.
I believe the correct answer from the choices listed above is option D. <span>The process of bringing the solvent to boiling, evaporating it all away, and leaving the solute behind, is known as evaporation. Hope this answers the question. Have a nice day.</span>
Answer:
(a) 8 m/s
(b) 5 s
Explanation:
(a)
Using,
V² = U²+2gh ......................... Equation 1
Where V = final velocity, U = Initial velocity, g = acceleration due to gravity on the surface of the moon, h = height reached.
Given: V = 0 m/s ( At it's maximum height), g = -1.6 m/s² ( as its moves against gravity), h = 20 m.
Substitute into equation 1
0 = U²+[2×20×(-1.6)]
-U² = - 64
U² = 64
U = √64
U = 8 m/s.
(b)
V = U +gt.................... Equation 2
Where t = time to reach the maximum height.
Given: V = 0 m/s ( At the maximum height), g = -1.6 m/s² ( Moving against gravity), U = 8 m/s.
Substitute into equation 2
0 = 8+(-1.6t)
-8 = -1.6t
-1.6t = -8
t = -8/-1.6
t = 5 s.
friction and the density of the air.
Answer:
False
Explanation:
Mercury has 0 natural satellites.