Hello there! I can help you!
7. Okay. So the computer was originally $1,080, and the discount is 20%, but David would still have to pay 80% of the original price. To find the sale price, let's multiply. 1,080 * 80% (0.8) is 864. The sale price of the compuet is $864, but now we must add the sales tax to find the total price. We will multiply by 108%, because 100% (representing the price + 8% is 108%, and doing this will get us stright to the total price. 864 * 108% (1.08) is 933.12. There. David paid a total price of $933.12 for the computer.
8. Okay. So we are looking for the amount of discount for the sweater Suzanne bought. First off, let's subtract the prices to find the difference. 40 - 25 is 15. Now, let's divide that by 40 (the original price) to find the discount. 15/40 is 0.375. Or 37.5% when converted into a percentage. There. Suzanne received a 37.5% discount on the sweater when she bought it.
9. So the car was bought for x dollars. 0.88 represents 88%, so the value of the car is 88% of the previous year. An expression that is a way to describe the change in car value is x * (100 - 0.12)^t, because you car loses 12% of the remaining value each year, which leaves 88% of it remaining, and having the t as the exponent represents the number of years. That expression helps find the value of the car currently and can help you compare the values.
Answer:
Domain {-2,0,2}
Range {-2,0,2}
Relation is a Function
Step-by-step explanation:
We are given a relation:
{ (-2,-2) , (0,0) , (2,2) }
Domain can be defined as the all possible values of x for a relation. It is considered as a set of all first values of the ordered pairs of a given relation.
Domain of the given relation is {-2,0,2}
Range can be defined as all possible value of y which corresponds to the values of x in the domain. It is considered as a set of all second values of the ordered pairs of a given relation.
Range of the given relation is {-2,0,2}
A relation is a function if only there is one value of y for each value of x. If in the set of ordered pair of the relation, the value of x gets repeated, then the relation is not a function.
As no values of x are getting repeated, the relation is a function.
<h2>
Explanation:</h2>
Hello, remember you need to write complete questions in order to get good and exact answers. Here you haven't provided any fractions, so I'll give you my own fractions.
The first fraction is:

The second fraction is:

So let's say that difference is:

Therefore, the result is:

The representation of this problem is shown using the number line below. As you can see, we have written both 1/2 and 1/4 and the difference is also indicated giving the result 1/4. That is, if we walk from 1/4 to 1/2 we'll walk 1/4 units.
The limit of the given function if
is 64
<h3>Limit of a function</h3>
Given the following limit of a function expressed as;

We are to determine the value of the function
![\frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
This can also be expressed as
![\frac{1}{4} \lim_{x \to 0} [f(x)]^4\\ = \frac{1}{4}(4)^4 \\=1/4\times 256\\=64](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%29%5E4%20%5C%5C%3D1%2F4%5Ctimes%20256%5C%5C%3D64)
Hence the limit of the given function if
is 64
Learn more on limit of a function here: brainly.com/question/23935467
#SPJ1