Answer:
See explanation below
Step-by-step explanation:
<u>First we will solve the radical equation</u> (which I guess was problem 1),
Let's start by simplifying it:

Now we will solve the equation by squaring both sides of the equation:

So the calculation for x was that x = -10
However, this does not produce a solution to the equation: When we plug this value into the radical equation we get:

This happens because <u>when we first squared both sides of the equation in the first part of the problem we missed one value for x </u>(remember that all roots have 2 answers, a positive one and a negative one) while squares are always positive.
When we squared the root, we missed one value for x and that is why the calculation does not produce a solution to the equation.
Answer:

Step-by-step explanation:

Answer:
Step-by-step explanation:
it's the second answer , the number of degrees between 0 and -5
I use the sin rule to find the area
A=(1/2)a*b*sin(∡ab)
1) A=(1/2)*(AB)*(BC)*sin(∡B)
sin(∡B)=[2*A]/[(AB)*(BC)]
we know that
A=5√3
BC=4
AB=5
then
sin(∡B)=[2*5√3]/[(5)*(4)]=10√3/20=√3/2
(∡B)=arc sin (√3/2)= 60°
now i use the the Law of Cosines
c2 = a2 + b2 − 2ab cos(C)
AC²=AB²+BC²-2AB*BC*cos (∡B)
AC²=5²+4²-2*(5)*(4)*cos (60)----------- > 25+16-40*(1/2)=21
AC=√21= 4.58 cms
the answer part 1) is 4.58 cms
2) we know that
a/sinA=b/sin B=c/sinC
and
∡K=α
∡M=β
ME=b
then
b/sin(α)=KE/sin(β)=KM/sin(180-(α+β))
KE=b*sin(β)/sin(α)
A=(1/2)*(ME)*(KE)*sin(180-(α+β))
sin(180-(α+β))=sin(α+β)
A=(1/2)*(b)*(b*sin(β)/sin(α))*sin(α+β)=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
KE/sin(β)=KM/sin(180-(α+β))
KM=(KE/sin(β))*sin(180-(α+β))--------- > KM=(KE/sin(β))*sin(α+β)
the answers part 2) areside KE=b*sin(β)/sin(α)side KM=(KE/sin(β))*sin(α+β)Area A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
<h3>
Answer: Choice D</h3>
=============================
Explanation:
The first figure has 4 sides (quadrilateral)
The second figure has 5 sides (pentagon)
The third figure has 6 sides (hexagon)
Each time we increase the number of sides by 1.
The fourth figure must have 7 sides (heptagon). The only thing that has 7 sides is the figure listed in choice D.