Answer:
c. 2,2-dichloropentane.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to firstly draw the structure of the reactant, pent-1-yne:

Now, we infer the halogen is added to the carbon atom with the most carbon atoms next to it, in this case, carbon #2, in order to write the following product:

Whose name is 2,2-dichloropentane.
Regards!
Answer:
Because the electrons in this ionic compound arent free to move and so cannot carry charge. For an iconic compound to conduct electricity it must be a liquid, either in a molten form or dissolved in water.
Explanation:
Is this clear?
The four ionic species initially in solution are Na⁺, PO₄³⁻, Cr³⁺, and Cl⁻. Since the precipitate is composed of Cr³⁺ and PO₄³⁻ ions, the spectator ions must be Na⁺ and Cl⁻.
The complete ionic equation is 3Na⁺(aq) + PO₄³⁻(aq) + Cr₃⁺(aq) + 3Cl⁻(aq) → 3Na⁺(aq) + 3Cl⁻(aq) + CrPO₄(s).
So the balanced <u>net ionic equation</u> for this reaction would be Cr³⁺(aq) + PO₄³⁻(aq) → CrPO₄(s).
Answer:
A supersaturated solution contains more dissolved solute than required for preparing a saturated solution and can be prepared by heating a saturated solution, adding more solute, and then cooling it gently. Excess dissolved solute crystallizes by seeding supersaturated solution with a few crystals of the solute.
Explanation: