Answer:
chlorophyll
Explanation:
Plants are green because their cells contain chloroplast which have pigment which absorb deep-blue and red light so that the rest of the sunlight spectrum is being reflected, causing the plants to look green.
1. The reactivity among the alkali metals increases as you go down the group due to the decrease in the effective nuclear charge from the increased shielding by the greater number of electrons. The greater the atomic number, the weaker the hold on the valence electron the nucleus has, and the more easily the element can lose the electron. Conversely, the lower the atomic number, the greater pull the nucleus has on the valence electron, and the less readily would the element be able to lose the electron (relatively speaking). Thus, in the first set comprising group I elements, sodium (Na) would be the least likely to lose its valence electron (and, for that matter, its core electrons).
2. The elements in this set are the group II alkaline earth metals, and they follow the same trend as the alkali metals. Of the elements here, beryllium (Be) would have the highest effective nuclear charge, and so it would be the least likely to lose its valence electrons. In fact, beryllium has a tendency not to lose (or gain) electrons, i.e., ionize, at all; it is unique among its congeners in that it tends to form covalent bonds.
3. While the alkali and alkaline earth metals would lose electrons to attain a noble gas configuration, the group VIIA halogens, as we have here, would need to gain a valence electron for an full octet. The trends in the group I and II elements are turned on their head for the halogens: The smaller the atomic number, the less shielding, and so the greater the pull by the nucleus to gain a valence electron. And as the atomic number increases (such as when you go down the group), the more shielding there is, the weaker the effective nuclear charge, and the lesser the tendency to gain a valence electron. Bromine (Br) has the largest atomic number among the halogens in this set, so an electron would feel the smallest pull from a bromine atom; bromine would thus be the least likely here to gain a valence electron.
4. The pattern for the elements in this set (the group VI chalcogens) generally follows that of the halogens. The greater the atomic number, the weaker the pull of the nucleus, and so the lesser the tendency to gain electrons. Tellurium (Te) has the highest atomic number among the elements in the set, and so it would be the least likely to gain electrons.
I really don’t know the answer, please help this kiddo with his question
Initial concentration of magnesium nitrate M1 = 2.13 M
Initial volume of magnesium nitrate, MgNO3 V1 = 1.24 L
Final concentration of MgNO3, M2 = 1.60 M
Let the final volume of MgNO3 upon dilution be V2
Formula to use:
M1*V1 = M2*V2
V2 = M1*V1/M2
= 2.13 M * 1.24 L/1.60 M = 1.65 L
Thus, the final volume of magnesium nitrate solution upon dilution is 1.65 L
Answer:
Using cobalt glass could be helpful to identify elements that weakly emit blue and/or violet.
Explanation: