<span>1.Describe how the graph of y = x2 can be transformed to the graph of the given equation.
y = (x+17)2
Shift the graph of y = x2 left 17 units.
2.Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = (x-4)2-8
Shift the graph of y = x2 right 4 units and then down 8 units.
.Describe how to transform the graph of f into the graph of g.
f(x) = x2 and g(x) = -(-x)2
Reflect the graph of f across the y-axis and then reflect across the x-axis.
Question 4 (Multiple Choice Worth 2 points)
Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = x2 + 8
Shift the graph of y = x2 up 8 units.
Question 5 (Essay Worth 2 points)
Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch.
f as a function of x is equal to the square root of x and g as a function of x is equal to 8 times the square root of x
f(x) = √x, g(x) = 8√x
vertical stretch factor 8
Plz mark as brainlest</span>
Answer:
n(A) = 6
Step-by-step explanation:
Let consider a set A = {a, m, b, d, h}. There are five elements in the set. The no of elements in a set is known its cardinality. Since set A has five elements, its cardinality number is 5. The cardinality of the set A is denoted by n(A).
Hence, from the given information:
The set A = {1, 2, 3, 4, 0, 7} have a cardinality number of 6
n(A) = 6
Subtract 12x from 84x = 72x
fales that is never gonna be proofen right
The required maximum value of the function C = x - 2y is 4.
Given that,
The function C = x - 2y is maximized at the vertex point of the feasible region at (8, 2). What is the maximum value is to be determined.
<h3>What is the equation?</h3>
The equation is the relationship between variables and represented as y =ax +m is an example of a polynomial equation.
Here,
Function C = x - 2y
At the vertex point of the feasible region at (8, 2)
C = 8 - 2 *2
C= 4
Thus, the required maximum value of the function C = x - 2y is 4.
Learn more about equation here:
brainly.com/question/10413253
#SPJ1