Answer:Yes
Explanation:
Only if someone down their bloodline has had 3 eyes. It would be possible, but highly unlikely.
An allele is dominant and heterzygote (Pp) when a dominant allele (P) is crossed with a recessive allele (p).
Explanation:
A dominant allele is the one with a particular dominant character or phenotype which dominates even though there are other alleles found.
A heterozygous allele results from two different alleles coding for a gene.
A heterozygous dominant allele (Pp) results from the crossing of a dominant allele (P) with a recessive allele due to complete masking of the recessive allele (p).
For example, when dominant brown eyes are crossed with recessive blue eyes, in a heterozygous dominant allele results in brown eyes and masks the recessive blue eyes.
Carrying compacity affects communities because there is usually limited resources. If a population gets too high, they may die out.
Answer:
50% or 1/2. The result remains unchanged if the husband were to have G6PD.
Explanation:
For X-linked recessive inheritance, a female (XX) needs two recessive alleles to be affected while a male needs only one (XY). It is hypothetically assumed that the Y chromosome does not carry any trait.
Assuming the allele for the disease is represented by g, a woman whose father suffered from G6PD is a carrier for the disease with genotype
. A normal man will have the genotype
. When the 2 marries:
x
=
It thus means that 50% or 1/2 of their sons will be expected to have G6PD.
Now, assuming the husband has G6PD, the mating becomes:
x
=
50% or 1/2 of their sons is still expected to have G6PD. The ratio remains unchanged.
The pancreas is connected directly into the small intestines and gallbladder.
Enzymes that are produced by the pancreas are secreted directly into the small
<span>intestine.</span>