Answer:
719.83°C
Explanation:
The heat that the sample of Zinc gives is equal to the heat that water is absorbing. That is:
C(Zn) * m(Zn) * ΔT(Zn) = C(H2O) * m(H2O) * ΔT(H2O)
<em>Where:</em>
<em>C is specific heat (Zn: 0.390J/g°C; H2O: 4.184J/g°C)</em>
<em>m is mass (Zn: 2.50g; H2O: 65.0g)</em>
<em>ΔT (Zn: ?; H2O: (22.5°C - 20.0°C = 2.50°C)</em>
<em />
Replacing:
0.390J/g°C * 2.50g * ΔT(Zn) = 4.184J/g°C * 65.0g * 2.50
ΔT(Zn) = 697.33°C
As final temperature of Zn is 22.50°C, initial temperature is:
Initial temperature: 697.33°C + 22.50°C
719.83°C
<em />
Answer is (4) - Se.
Among the given choices Se has the highest electronegativity value as 2.4 compared to others. Hence, Se shows <span>greatest attraction for electrons in a chemical bond.
</span>Electronegativity is
a value that tells us how an atom can attract electrons towards itself. <span>If
the electronegativity is high, then the attraction to the electrons is also high.
</span>
Answer:
78
Explanation:
atomic number is number of protons
Object one is 5.2 g/cm3
object two is 3.46g/ml
Which of the following measurements is expressed to three significant figures?
C. 5.60 km
Hope this helps!