Answer:
The answer to your question is 1 M
Explanation:
Data
Molarity = ?
mass of CaCl₂ = 222.2 g
Volume = 2 l
Process
1.- Calculate the molar mass of CaCl₂
CaCl₂ = 40 + (35.5 x 2) = 40 + 71 = 111 g
2.- Calculate the moles of CaCl₂
111g of CaCl₂ ---------------- 1 mol
222.2 f of CaCl₂ ---------------- x
x = (222.2 x 1) / 111
x = 222.2 / 111
x = 2 moles
3.- Calculate the Molarity
Molarity = moles / Volume
-Substitution
Molarity = 2/2
-Result
Molarity = 1
Answer:
SO₄²⁻(aq) +Sn²⁺(aq) +4H⁺ → H₂SO₃(aq) + Sn⁴⁺(aq) + H₂O
Explanation:
At first calculate the oxidation state of that element which undergoes oxidation as well as reduction.
for SO₄²⁻ the oxidation state of sulphur is +6 and H₂SO₃ the oxidation state of sulphur is +4
So balance equation is
(Reduction) SO₄²⁻ + 4H⁺+ 2e⁻ → H₂SO₃ + H₂O.........................................(1)
(oxidation) Sn²⁺ → Sn⁴⁺ + 2e⁻ .............................................................(2)
Adding equation 1 & 2
we get
SO₄²⁻(aq) +Sn²⁺(aq) +4H⁺ → H₂SO₃(aq) + Sn⁴⁺(aq) + H₂O
Answer:The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum. A compound, C5H10O2, exhibits strong, broad absorption across the 2500-3200 cm^1 region and an intense absorption at 1715 cm'^-1. Relative absorption intensity: (s)=strong, (m)-medium, (w) weak. What functional class(cs) docs the compound belong to List only classes for which evidence is given here. Attach no significance to evidence not cited explicitly. Do not over-interpret exact absorption band positions. None of your inferences should depend on small differences like 10 to 20 cm^1. The functional class(es) of thla compound is(are) alkane (List only if no other functional class applies.) alkene terminal alkyne internal alkyne arene alcohol ether amine aldehyde or ketone carboxylic acid ester nitr
Answer:
B
Explanation:
Molarity = 0.010M
Volume = 2.5L
Applying mole-concept,
0.010mole = 1L
X mole = 2.5L
X = (0.010 × 2.5) / 1
X = 0.025moles
0.025moles is present in 2.5L of NaOH solution.
Molar mass of NaOH = (23 + 16 + 1) = 40g/mol
Number of moles = mass / molar mass
Mass = number of moles × molar mass
Mass = 0.025 × 40
Mass = 1g
1g is present in 2.5L of NaOH solution