You would get four moles of magnesium nitrate :) you would have to
“ ?molesmg(oh)2 = 8molmg(no3)2 x molmg(oh)2 / 2molhno3 = 4 moles of magnesium nitrate :))) hopefully this helps! <3
Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.
Search Results
Featured snippet from the web
Alchemy is extremely complicated. It is based on the practical skills of early metal workers and craftsmen, on Greek philosophy, and on Eastern mystic cults that sprang up in the first centuries after Christ and influenced so much of magic and occult thought.
When gases get cooler the molecules slow down or lose energy and condense so the volume in the tire or soccer ball would decrease and may feel flatter
Answer:
2,3,6,1
2,3,6,1
Explanation:
The unbalanced reaction expression is given as:
AlBr₃ + K₂SO₄ → KBr + Al₂(SO₄)₃
We need to balanced this reaction equation. Our approach is a mathematical method where we assign variable a,b,c and d as the coefficients.
aAlBr₃ + bK₂SO₄ → cKBr + dAl₂(SO₄)₃
Conserving Al; a = 2d
Br: 3a = c
K: 2b = c
S: b = 3d
O: 4b = 12d
Let a = 1, c = 3, d =
b =
Multiply through by 2 to give;
a = 2, b = 3, c = 6 and d = 1
2AlBr₃ + 3K₂SO₄ → 6KBr + Al₂(SO₄)₃