Answer:
The amount of the chemical flows into the tank during the firs 20 minutes is 4200 liters.
Step-by-step explanation:
Consider the provided information.
A chemical flows into a storage tank at a rate of (180+3t) liters per minute,
Let
is the amount of chemical in the take at <em>t </em>time.
Now find the rate of change of chemical flow during the first 20 minutes.

![\int\limits^{20}_{0} {c'(t)} \, dt =\left[180t+\dfrac{3}{2}t^2\right]^{20}_0](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B20%7D_%7B0%7D%20%7Bc%27%28t%29%7D%20%5C%2C%20dt%20%3D%5Cleft%5B180t%2B%5Cdfrac%7B3%7D%7B2%7Dt%5E2%5Cright%5D%5E%7B20%7D_0)


So, the amount of the chemical flows into the tank during the firs 20 minutes is 4200 liters.
Answer:
y = -5x+11
Step-by-step explanation:
20 I apologize if this is wrong
Answer: D) 0.733.
Step-by-step explanation:
Let C denotes the number of employees having college degree and S denote the number of employees are single.
We are given ,
Total = 600 , n(C)=400 , n(S)=100 , n(C∩S)=60
Then,

Now, the probability that an employee of the company is single or has a college degree is

Hence, the probability that an employee of the company is single or has a college degree is 0.733
Answer:
There's 2 solution, x= -1 and x= 2
Step-by-step explanation: