Radioactive decay => C = Co { e ^ (- kt) |
Data:
Co = 2.00 mg
C = 0.25 mg
t = 4 hr 39 min
Time conversion: 4 hr 39 min = 4.65 hr
1) Replace the data in the equation to find k
C = Co { e ^ (-kt) } => C / Co = e ^ (-kt) => -kt = ln { C / Co} => kt = ln {Co / C}
=> k = ln {Co / C} / t = ln {2.00mg / 0.25mg} / 4.65 hr = 0.44719
2) Use C / Co = 1/2 to find the hallf-life
C / Co = e ^ (-kt) => -kt = ln (C / Co)
=> -kt = ln (1/2) => kt = ln(2) => t = ln (2) / k
t = ln(2) / 0.44719 = 1.55 hr.
Answer: 1.55 hr
None because Covalent compounds don’t conduct electricity because they are formed between the non metal atoms by sharing of electrons. The Covalent compounds haves no free electrons and also no ions and hence they do not conduct electricity. That is why they do not conduct electricity.
Answer:
compounds are elements include an element and a compound
Explanation:
elements in the decomposition reaction is the substance that cannot be separated into simpler substances. Compounds, technically act as a reactant in the decomposition reaction, but since the reaction breakdown one substance into two or more, sometimes it exists in the product
Answer:
M of Al=33.09g or 0.0331kg
Explanation:
Heat Energy= specific heat*mass*change in temperature
H=M*C*T
make M subject of the formula
M=H/CT
M=685J/0.90J/g°C*(45°C-22°C)
M=685J/0.90J/g°C*23°C
M=685J/20.7J/g
M=33.09g or 0.0331kg
Answer:
= 97.44 Liters at S.T.P
Explanation:
The reaction between Iron (iii) oxide and Carbon monoxide is given by the equation;
Fe2O3(s)+ 3CO(g) → 3CO2(g) + 2Fe(s)
From the reaction when the reactants react, 2 moles of Fe and 3 moles of CO2 are produced.
Therefore; Mole ratio of Iron : Carbon dioxide is 2:3
Thus; Moles of Carbon dioxide = (2.9/2)×3
= 4.35 moles
But; 1 mole of CO2 at s.t.p occupies 22.4 liters
Therefore;
Mass of CO2 = 22.4 × 4.35 Moles
= 97.44 L