Answer:
109.09°C
Explanation:
Given that:
the capacity of the cooling car system = 5.6 gal
volume of solute = volume of the water; since a 50/50 blend of engine coolant and water (by volume) is used.
∴ 
Afterwards, the mass of the solute and the mass of the water can be determined as shown below:
mass of solute = 


On the other hand; the mass of water = 


Molarity = 
= 
= 17.757 m
≅ 17.76 m
∴ the boiling point of the solution is calculated using the boiling‑point elevation constant for water and the Molarity.

where,
= 0.512 °C/m
= 100°C + 17.56 × 0.512
= 109.09 °C
The pH decreases to a large or small extent with each of the given additions.
<h3>
What is common name of NaOH?</h3>
The common name of NaOH is sodium hydroxide. Lye and caustic soda are other names for sodium hydroxide, an inorganic substance having the formula NaOH. It is a white, solid ionic substance made up of the cations sodium (Na+) and the anions hydroxide (OH). Sodium hydroxide is a chemical that manufacturers utilize to make things like soap, rayon, paper, explosives, colors, and petroleum products. Processing cotton fabrics, metal cleaning and processing, oxide coating, electroplating, and electrolytic extraction are further uses for sodium hydroxide. A caustic metallic base is sodium hydroxide (NaOH), sometimes referred to as lye or caustic soda. Caustic soda, an alkali, is commonly employed in a variety of sectors, primarily as a potent chemical base in the production of pulp and paper, textiles, drinking water, and detergents.
To learn more about sodium hydroxide, visit:
brainly.com/question/24010534
#SPJ4
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
A.
Explanation:
hope this helped sorry if its wrong!