Answer:
rule
Step-by-step explanation:
Answer:
b. 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Rewrite function [Exponential Rule - Root Rewrite]:
![\displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%28x%29%20%3D%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D)
- Chain Rule:
![\displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cbigg%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5BF%28x%29%5D)
- Basic Power Rule:
![\displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%20-%201%7D%20%5Ccdot%20F%27%28x%29)
- Simplify:
![\displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B-2%7D%7B3%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:
![\displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%285%29%20%3D%20%5Cfrac%7BF%27%285%29%7D%7B3%5BF%285%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
- Substitute in function values:

- Exponents:

- Multiply:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer: 12,997 - 7,580 = x
x= 5417
Step-by-step explanation: 12,997 - 7580 = 5417
Hope this helps
First check whether the point (-6,8) is the solution to any of the equations. To check, just plug in the x and y values of the points into the equation and see if they give you a true statement.
5(-6)+3(8)=-6
-30+24=-6
-6=-6
That's a true statement so the point is the solution to the first equation.
2(-6)+(8)=-4
-12+8=-4
-4=-4
It is a true statement so the point is a solution for both equations
There are no other solution because lines can only intersect in one or infinite points, but that is only if they are the same lines, which is not true in this circumstance.
A. It is the only solution to the set.
Hope this helps.