Answer:
Explanation:
Molal freezing point depression constant of butanol Kf = 8.37⁰C /m
ΔTf = Kf x m , m is no of moles of solute per kg of solvent .
mol weight of butanol = 70 g
235.1 g of butanol = 235.1 / 70 = 3.3585 moles
3.3585 moles of butanol dissolved in 4.14 kg of water .
ΔTf = 8.37 x 3.3585 / 4.14
= 6.79⁰C
Depression in freezing point = 6.79
freezing point of solution = - 6.79⁰C .
Answer:
0,72 moles of SO₂ remain
Explanation:
The reaction is:
2SO₂ + O₂ → 2SO₃
Where molecular mass of SO₂ is 64,066g/mol and of SO₃ is 80,066g/mol.
86,0g of SO₂ are:
86,0g × (1mol / 64,066g) = <em>1,34 moles of SO₂</em>.
50,0g of SO₃ are:
50,0g × (1mol / 80,066g) = <em>0,62 moles of SO₃</em>.
Now, as 2 moles of SO₂ produce 2 moles of SO₃, the moles of SO₂ that remain after the reaction are the initial moles of SO₂ - moles of SO₃:
1,34 moles - 0,62 moles =
<em>0,72 moles of SO₂ remain</em>
I hope it helps!
The decrease in velocity is called deceleration or negative acceleration.
Hope i helped... If you need anything else ask me! :)
Answer:
0.5455
Explanation:
The moles of benzene in the process stream in 1 sec = 450 moles
The moles of toluene in the process stream in 1 sec = 375 moles
So, according to definition of mole fraction:
Applying values as:
<u>Mole fraction of benzene in the process stream = 0.5455</u>
Answer:
It's answer is pure substances