Answer:
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Explanation:
The activity series helps us to easily define whether or not a reaction will occur.
Elements at the top of the activity series are highly reactive and will always displace those at the bottom of the series in any reaction.
With the above information in mind, let us answer the questions given above.
Ag + NaNO₃ —> Na + AgNO₃
The above reaction will not occur because Na is higher than Ag in the activity series. Thus, Ag cannot displace Na from solution.
Pb + Mg(NO₃)₂ —> Pb(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Pb in the activity series. Thus, Pb cannot displace Mg from solution.
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
The above reaction will occur because Mg is higher than Fe in the activity series. Thus, Mg will displace Fe from solution.
Cu + Mg(NO₃)₂ —> Cu(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Cu in the activity series. Thus, Cu cannot displace Mg from solution.
From the above illustration, only
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Will occur.
Since there is one carbon with 4 Fluorines attached to it, and both compounds are no metals, we use the covalent method for naming,
Here we ignore the prefix for the first element if it is 1. Mono. Then pay attention to the second one, it would be tetra, because tetra means 4. Here there are 4 fluorines.
Drop ine and place ide
CF4 = carbon tetrafluoride.
Yes, it is a Compound.
They both comprehend with the atoms of each sourse!
Usually the controlled experiment is the one that is not tested so they look at the experimental experiment to find the differences. Sorry if this doesn't answer your question.
I believe your answer is B.