Answer:
a= 336 different ways
b= 10 possible combinations
Step-by-step explanation:
As it is a definite machine and it must have ordered combinations therefore it is a permutation question . So finding 3 out of eight
8 P 3= 336 different ways the eight machines be arranged in the three spaces available.
Since the parts are randomly selected and there is no distinct pattern therefore combinations is used to solve this.
5C2 = 10 possible combinations of two parts can be selected.
Answer:
x equals 30
Step-by-step explanation:
An equilateral triangle adds up to a total of 180 degrees so divided 60 into two and you get 30
You have the answer into the images.
Since line AB is multiplied by 3 to get line XY, you would multiply 2 by 3 to get 6. The answer is J, or 6. Hope this helps!
A
function 
from a
set A to a
set B is defined as a relation that assings to each element

in the set A exactly one element

in the set B. The set A is called the domain of the function while the set B is the range. So we have five statements and need to find some functions. Melissa decides to reserve a patch in her vegetable garden for growing
bell peppers. If each side of the
tomato patch is

feet, then we have a square patch as shown in the Figure below.
1.a) Write the function Wa(x) representing the width of the bell pepper patch.
We know that she wants its width to be half the width of the tomato patch. Let

be the width of the tomato patch, then the function that matches this statement is:
1.b) Write the function La(x) representing the length of the bell pepper patch.In this case Melissa wants <span>its length to exceed the length of the tomato patch by 2 feet. To do this we enlarge the length of the tomato patch 2 feet. Therefore the function is the following:
</span>

<span>
2. Ar</span>
ea of the bell pepper patch in terms of x.
Given that the bell pepper patch is a rectangle, then t<span>he area of a rectangle is the product of the length and width. So:
</span>

<span>
3. C</span><span>
ombined area of the tomato patch and the bell pepper patch.
This function is the sum of both the area of the tomato patch and the bell pepper patch. So:
</span>

<span>
4. W</span>
rite the function Aa(x) for the remaining planting area in the garden.
The remaining planting area in the garden are the rectangles in red. So we need to subtract
the width of the bell pepper patch from the width of the tomato patch
and multiply it by 2. In mathematical language this is
given by:<span>
</span>

5. Find the area of the remaining space in the garden after planting tomatoes and bell peppers.
Given that <span>Melissa wants the area of the bell pepper patch to be 31.5 square feet, then it is true that:
</span>

<span>
Therefore the area of the remaining space is:
</span>