Answer: S- phase of cell cycle
Explanation:
Cell cycle is a cyclical process taken place in a cell leading to duplication of its DNA and division of cytoplasm to form two daughter cells.
The S phase of a cell cycle is an important part of the cycle which is found during interphase stage before either mitosis or meiosis.
The S phase of cell cycle is responsible for the replication of DNA. This replication DNA causes it to double before it enters mitosis or meiosis.
Answer and Explanation:
The manipulation of the gene is called genetic engineering. In genetic engineering, fragments of genes are cloned by leading the genes into the host cell. The advantage of using a prokaryotic host system in genetic engineering is that bacterial cells are used to produce commercially significant products. For example, human growth hormone helps to treat dwarfism, and human insulin production, which is used to treat diabetes. The bacterium P.putida is created by genetic engineering, which is used to break down petroleum products. Genetic engineering also carries some potential risks, such as transferring the selected gene into another speice, benefit one species can harm another speice. Therefore genetic engineering must be used in limit in prokaryotes. These limitations are also addressable in single-cell eukaryotic systems. Biologics-based therapeutic medicines such as a vaccine, gene therapies, and cell therapies known as bioproduction are produced. Medicines are so complex that they can only be formed in a living system. Biopharmaceuticals, value-added food, fuels, chemicals, antibiotics, and many other products are produced by bioproduction.
Answer:
An artificial heart is a prosthetic device that is implanted into the body to replace the original biological heart. It is distinct from a cardiac pump, which is an external device used to provide the functions of both the heart and the lungs. Thus, the cardiac pump need not be connected to both blood circuits.
Explanation:
Answer:
The movement of molecules across a membrane without the input of energy is known as passive transport. When energy (ATP) is needed, the movement is known as active transport. Active transport moves molecules against their concentration gradient, from an area of low concentration to an area of high concentration.
Explanation:
hope this helps :D