Answer:
Both equation represent functions
Step-by-step explanation:
The function is the relation that for each input, there is only one output.
A. Consider the equation

This equation represents the function, because for each input value x, there is exactly one output value y.
To check whether the equation represents a function, you can use vertical line test. If all vertical lines intersect the graph of the function in one point, then the equation represents the function.
When you intersect the graph of the function
with vertical lines, there will be only one point of intersection (see blue graph in attached diagram). So this equation represents the function.
B. Consider the equation

This equation represents the function, because for each input value x, there is exactly one output value y.
When you intersect the graph of the function
with vertical lines, there will be only one point of intersection (see green graph in attached diagram). So this equation represents the function.
If you were to reverse it it would be 7/6, but if you need it in another form, tell me.
Taking the derivative of 7 times secant of x^3:
We take out 7 as a constant focus on secant (x^3)
To take the derivative, we use the chain rule, taking the derivative of the inside, bringing it out, and then the derivative of the original function. For example:
The derivative of x^3 is 3x^2, and the derivative of secant is tan(x) and sec(x).
Knowing this: secant (x^3) becomes tan(x^3) * sec(x^3) * 3x^2. We transform tan(x^3) into sin(x^3)/cos(x^3) since tan(x) = sin(x)/cos(x). Then secant(x^3) becomes 1/cos(x^3) since the secant is the reciprocal of the cosine.
We then multiply everything together to simplify:
sin(x^3) * 3x^2/ cos(x^3) * cos(x^3) becomes
3x^2 * sin(x^3)/(cos(x^3))^2
and multiplying the constant 7 from the beginning:
7 * 3x^2 = 21x^2, so...
our derivative is 21x^2 * sin(x^3)/(cos(x^3))^2
What are you solving for???