The interval where the function is nonlinear and decreasing is 0 < x < 4
<h3>How to determine the interval where the function is nonlinear and decreasing?</h3>
The straight lines on the graph are the intervals where the graph is linear
This means that the straight lines on the graph will not be considered
Considering the curve, the graph decrease from x = 0 to x = 4
This can be rewritten as:
0 < x < 4
Hence, the interval where the function is nonlinear and decreasing is 0 < x < 4
Read more about function intervals at:
brainly.com/question/13136492
#SPJ1
Unit rate if your finding how much one cost.
Answer: 
=====================================================
Reason:
Plot the points (0,0) and (r,s). You can place (r,s) anywhere you want.
Connect the two points mentioned and form a right triangle such that the segment from (0,0) to (r,s) is the hypotenuse of said right triangle.
The horizontal leg has a length of r-0 = r units, while the vertical leg will be 's' units.
Check out the diagram below.
We then apply the pythagorean theorem to say
where h is the hypotenuse. Solving for h gets us
. We only focus on the positive square root since a negative hypotenuse makes no sense.
Since we made the hypotenuse the segment with endpoints (r,s) and (0,0), this means the hypotenuse length and the distance are the same thing.
Therefore, the distance from (r,s) to (0,0) is 
As an alternative, you can use the distance formula to get the same answer. The distance formula is effectively the pythagorean theorem phrased a different way.
Answer:
3/5 c
Step-by-step explanation:
_________________