Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
-19.15 degrees Celsius. 254k-273.15=-19.15
You have to subtract 273
Answer: 2= baby being developed= embryo 1 i dont know sorry
Explanation:
There are several ways of expressing concentration of solution. Few of them are listed below
1) mass percentage
2) volume percentage
3) Molarity
4) Normality
5) Molality
In most of the drugs, concentration is expressed either in terms of mass percentage or volume percentage. For, solid in liquid type systems, mass percentage is convenient way of expressing concentration, while for liquid in liquid type solutions, expressing concentration in terms of volume percentage is preferred. Present system is an example of liquid in liquid type solution
Here, concentration of H2O2 is given antiseptic = 3.0 % v/v
It implies that, 3ml H2O2 is present in 100 ml of solution
Thus, 400 ml of solution would contain 4 X 3 = 12 ml H2O2