The power of is series combination is Vn^2 times that of a parallel combination.
For series combination :
Req = R + R + R + ............... n times = nR
I = Δv/nr
Power = (Δv/nr)^2 × nr = Δv^2/nr
For parallel combination
1/req = 1/R + 1/R + 1/R +................(n times) = n/R
Req = R/n
Power = Δv/(R/n) = nΔv^2/R
Ratio = Δv^2/nr/n·Δv^2/R = 1/n^2
Hence, power of is series combination is Vn^2 times that of a parallel.
Learn more about parallel combination here:
brainly.com/question/12400458
#SPJ4
Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N
Answer:
Put water at room temperature into a vacuum chamber and begin removing the air. Eventually, the boiling temperature will fall below the water temperature and boiling will begin without heating. Or if you want to be easy but messy, add dry ice to a bowl of water and watch how the water starts to boil.
Answer:
326149.2 KJ
Explanation:
The heat transfer toward and object that suffered an increase in temperature can be calculated using the expression:
Q = m*cv*ΔT
Where m is the mass of the object, cv is the specific heat capacity at constant volume, which basically means the amount of heat necessary for a 1kg of water to increase 1C degree in temperatur, and ΔT is the change in temperature.
A 65000 L swimming pool will have a mass of:
65000L *
= 65000 kg
The specific heat capacity at constant volume of water is equal to 4.1814 KJ/KgC.
We replace the data and get:
Q = m*cv*ΔT = 65000 kg * 4.1814 KJ/KgC * 1.2°C = 326149.2 KJ