Well, I'll try to write the formula in a way that's not confusing,
but I'm afraid it might be slightly confusing anyway.
When you're working with dB, the basic rule is
A change of 10 dB means either multiplying or dividing by 10 .
Multiply something by 10 ==> it increases by 10 dB.
Divide something by 10 ==> it decreases by 10 dB.
It turns out that another way to write all of this is . . .
An increase of 10 dB ===> multiply the original amount by 10¹
An increase of 20 dB ===> multiply the original amount by 10²
An increase of, say, 7 dB ===> multiply the original amount by 10⁰·⁷
A decrease of 10 dB ===> multiply the original amount by 10⁻¹
A decrease of 30 dB ===> multiply the original amount by 10⁻³
A decrease of, say, 13 dB ===> multiply the original amount by 10⁻¹·³
This question says: The sound increases by 5 dB .
That means the original 'intensity' or 'power' of the sound
is multiplied by
10⁰·⁵ = √10 = about 3.162 (rounded) .
From the choices listed, the closest one is (c).
Answer:
a = -7.29 m / s²
Explanation:
For this exercise we must use Newton's second law,
F -W = m a
Force is electrical force
F = k q₁ q₂ / r²
k q₁ q₂ / r² -mg = m a
indicate that the charge of the two spheres is equal
q₁ = q₂ = q
a = (k q² / r² - m g) / m
a = k q² / m r² - g
Let's reduce the magnitudes to the SI system
m = 0.19 g (1kg / 1000 g) = 1.9 10⁻⁴ kg
q1 = q2 = q = -23.0 nC (1C / 10⁹ nC) = -23.0 10⁻⁹ C
r = 10.0 cm (1m / 100cm) = 0.1000 m
let's calculate
a = 9 10⁹ (23.0 10⁻⁹)² / (0.1000² 1.9 10⁻⁴) - 9.8
a = -7.29 m / s²
The negative sign indicates that the direction of this acceleration is downward
An apple falling to the ground is not an example of centripetal acceleration.
That would be called VOLT