1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
3 years ago
15

The Tevatron acceleator at the Fermi National Accelerator Laboratory (Fermilab) outside Chicago boosts protons to 1 TeV (1000 Ge

V) in five stages (the numbers given in parentheses represent the total kinetic energy at the end of each stage): Cockcroft-Walton (750 keV), Linac (400 MeV), Booster (8 GeV), Main ring or injector (150 Gev) and finally the Tevatron itself (1 TeV). What is the speed of the proton at the end of each stage?
Physics
1 answer:
Eva8 [605]3 years ago
4 0

Answer:

a) v = c \cdot 0.04 = 1.2\cdot 10^{7} m/s

b) v = c \cdot 0.71 = 2.1\cdot 10^{8} m/s

c) v = c \cdot 0.994 = 2.97\cdot 10^{8} m/s

d) v = c \cdot 0.999 = 2.997\cdot 10^{8} m/s

e) v = c \cdot 0.9999 = 2.999\cdot 10^{8} m/s

Explanation:

At that energies, the speed of proton is in the relativistic theory field, so we need to use the relativistic kinetic energy equation.

KE=mc^{2}(\gamma -1) = mc^{2}(\frac{1}{\sqrt{1-\beta^{2}}} -1)           (1)

Here β = v/c, when v is the speed of the particle and c is the speed of light in vacuum.

Let's solve (1) for β.

\beta = \sqrt{1-\frac{1}{\left (\frac{KE}{mc^{2}}+1 \right )^{2}}}

We can write the mass of a proton in MeV/c².

m_{p}=938.28 MeV/c^{2}

Now we can calculate the speed in each stage.

a) Cockcroft-Walton (750 keV)

\beta = \sqrt{1-\frac{1}{\left (\frac{0.75 MeV}{938.28 MeV}+1 \right )^{2}}}

\beta = 0.04

v = c \cdot 0.04 = 1.2\cdot 10^{7} m/s

b) Linac (400 MeV)

\beta = \sqrt{1-\frac{1}{\left (\frac{400 MeV}{938.28 MeV}+1 \right )^{2}}}

\beta = 0.71

v = c \cdot 0.71 = 2.1\cdot 10^{8} m/s

c) Booster (8 GeV)

\beta = \sqrt{1-\frac{1}{\left (\frac{8000 MeV}{938.28 MeV}+1 \right )^{2}}}

\beta = 0.994

v = c \cdot 0.994 = 2.97\cdot 10^{8} m/s

d) Main ring or injector (150 Gev)

\beta = \sqrt{1-\frac{1}{\left (\frac{150000 MeV}{938.28 MeV}+1 \right )^{2}}}

\beta = 0.999

v = c \cdot 0.999 = 2.997\cdot 10^{8} m/s

e) Tevatron (1 TeV)

\beta = \sqrt{1-\frac{1}{\left (\frac{1000000 MeV}{938.28 MeV}+1 \right )^{2}}}

\beta = 0.9999

v = c \cdot 0.9999 = 2.999\cdot 10^{8} m/s

Have a nice day!

You might be interested in
About how far does the S wave travel through Earth in 13 minutes?
Elina [12.6K]

Answer:

Explanation:

6000 km

6 0
3 years ago
Read 2 more answers
A simple machine makes our work easier and faster. why?​
kirill [66]

Answer:

simple machines such as ramps lessen the moment required to do work. if a triangle has a base of 5 and the height  is 7, a ramp would make the hypotenuse of this triangle lessoning the total distance. using a²+b²=c² 25+49=c² 74≈8.6 and it is obvious that 8.6 is less than 12 in every unit. other simple machines such as pulleys make it lighter making it simply easier for an object to be lifted.

Explanation:

4 0
3 years ago
Read 2 more answers
Perpendicular parking spaces require turning at a ______-degree angle.
Archy [21]
Perpendicular means at 90 degree angle. so,
<span>Perpendicular parking spaces require turning at a 90 degree angle.

When you are going to park perpendicularly, you need a distance of 7 to 8 feet from the vehicle you are parking next to, and when you are parking parallel, you need 5 feet distance from the vehicle you are parking next to.</span>
7 0
3 years ago
Suppose that instead of a long straight wire, a shortstraight wire was used. The distance from the wire to thepoint that the mag
vichka [17]

Answer:

Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.

Explanation:

The magnetic field, B of long straight wire can be obtained by applying ampere's law

B= \frac{\mu_0 I}{2\pi r}

I is here current, and r's the distance from the wire to the field of measurement.

The magnetic field is obviously directly proportional to the current wire. From this expression.

As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.

4 0
3 years ago
C is correct just an FYI
belka [17]

Answer:

Huh?

Explanation:

3 0
2 years ago
Other questions:
  • The fact that current is uniform anywhere in a series circuit is an application of the principle of:
    10·2 answers
  • What are the two main classifications of matter??
    9·1 answer
  • The fastest airplane in the world can travel 7200 km/hr. How long will it take the plane to go from Los Angeles to London, 8750
    9·1 answer
  • At which point will the riders experience centripetal acceleration?
    10·1 answer
  • A discus thrower achieves a high throw of 100m with the discus released at an angle of 30° calculate the initial speed of the di
    15·1 answer
  • The lower atmosphere is mostly warmed by radiated heat from Earth's surface. However, water heats up and cools down more slowly
    15·2 answers
  • Based on how this sample looks, which term describes the matter that makes up granite?
    11·2 answers
  • According to legend, Galileo dropped two balls from the Tower of Pisa to see which would fall
    9·1 answer
  • A parallel beam of light from a laser with a wavelength 450 nm, falls on a grating whose slits are 1.28 x 10^-4 cm apart. How fa
    14·1 answer
  • What is another word that can be used to describe the position of the<br> object?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!