<span>So we want to know what will happen when the fast moving car that is making loud noise that is initially approaching the person, passes the person and starts to move away. So Doppler effect is a phenomenon where when the source of a sound is approaching a person, the person hears the sound as higher than if the source was standing still with respect to the person because the wavelength is getting shorter, and as the source is moving avay from the person the sound is getting deeper because the wavelength is getting longer. So the correct answer is A. </span>
Answer:
True
Explanation:
It can cause flooding and destruction of habitat because of dammed rivers create large reservoirs upstream which can spill out to the surrounding during heavy rainfall causing flooding and destruction of natural habitat.
I know i did part a correctly. heres what i did: momentum is conserved: m1 * u - m2 * u = m2 * v or (m1 - m2) * u = m2 * v Also, for an elastic head-on collision, we know that the relative velocity of approach = relative velocity of separation (from conservation of energy), or, for this problem, 2u = v Then (m1 - m2) * u = m2 * 2u m1 - m2 = 2 * m2 m1 = 3 * m2 m1 is the sphere that remained at rest (hence its absence from the RHS), so m2 = 0.3kg / 3 m2 = 0.1 kg b) this part confuses me, heres what i did (m1 - m2) * u = m2 * v (.3kg - .1kg)(2.0m/s) = .1kg * v .4 kg = .1 v v = 4 m/s What my teacher did: (.3g - .1g) * 2.0m/s = (.3g + .1g) * v I understand the left hand side but i dont get the right hand side. Why is m1 added to m2 when m1 is at rest which makes its v = zero?? v = +1.00m/s since the answer is positive, what does that mean? Also, if v was -1.00m/s what would that mean? thanks!
<span>Reference https://www.physicsforums.com/threads/elastic-collision-with-conservation-of-momentum-problem.651261...</span>
Answer:
Principle of conservation of linear momentum is state as provided no external force acts on a system of colliding bodies the total linear momentum of the bodies (in a given direction) remains constant