The complete sentence is:
In a third class lever, the distance from the effort to the fulcrum is SMALLER the distance from the load/resistance to the fulcrum.
In fact, in a third class lever, the fulcrum is on one side of the effort and the load/resistance is on the other side, so the effort is located somewhere between the two of them. This means that the distance effort-fulcrum is smaller than the distance load-fulcrum.
Answer:
<em>The distance is 35 m and the magnitude of the displacement is 26.93 m</em>
Explanation:
<u>Displacement and Distance</u>
These are two related concepts. A moving object constantly travels for some distance at defined periods of time. The total distance is the sum of each individual distance the object traveled. It can be written as:
dtotal=d1+d2+d3+...+dn
This sum is calculated independently of the direction the object moves.
The displacement only takes into consideration the initial and final positions of the object. The displacement, unlike distance, is a vectorial magnitude and can even have magnitude zero if the object starts and ends the movement at the same point.
Taylor walks 25 m north and 10 m west. The total distance is the sum of both numbers:
d = 25 m + 10 m = 35 m
To calculate the displacement, we need to know the final position with respect to the initial position. If we set the coordinates of Taylor's car as the origin (0,0), then his final position is (-10,25), assuming the west direction is negative and the north direction is positive.
The magnitude of the displacement is the distance from (0,0) to (-10,25):


D = 26.93 m
The distance is 35 m and the magnitude of the displacement is 26.93 m
for this you use the pythagoreom theorem
6^2 + 8^2
36 + 64 = 100
the square root of 100 is 10
10 is the answer
I think the correct answer from the choices listed above is option D. The model of the universe that suggests that the sun is the center of the universe was first brought by Copernicus. His model is known as the "Sun centered model".
Kinetic energy is the energy for a catapult.