Answer:
Base-emitter and Base-collector junctions are forward biased
Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s
Answer:5.075N
Explanation:
Mass=0.145kg
Acceleration=35m/s^2
Force=mass x acceleration
Force=0.145 x 35
Force=5.075N
Answer:
G = 6,786 10⁻¹¹ m³ / s² kg
Explanation:
The law of universal gravitation is
F = G m M/ r²
Where G is the gravitational constant, m and M are the masses of the bodies and r is the distance from their centers
Let's use Newton's second law
F = m a
The acceleration is centripetal
a =
We replace
G m M / r² = m
G =
r² / M
Let's replace and calculate
G = 2.7 10⁻³ (3.88 10⁸)² / 5.99 10²⁴
G = 6,786 10⁻¹¹ m³ / s² kg
Let's perform a dimensional analysis
[N m²/kg²] = [kg m/s² m² / kg²] = [m³ / s² kg]
In increases depends how you move the muscle