Electron - negligible mass, negative charge, orbits the nucleus
Proton - 1 AMU, positive charge, in the nucleus
Neutron, 1 AMU, no charge, in the nucleus
The majority of wind turbines consist of three blades mounted to a tower made from tubular steel. There are less common varieties with two blades, or with concrete or steel lattice towers. At 100 feet or more above the ground, the tower allows the turbine to take advantage of faster wind speeds found at higher altitudes.
Turbines catch the wind's energy with their propeller-like blades, which act much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on one side of the blade. The low-pressure air pocket then pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the lift is much stronger than the wind's force against the front side of the blade, which is called drag. The combination of lift and drag causes the rotor to spin like a propeller. So therefore your answer would be A.
If this helped could you leave a brainlyest?
The reaction, as what is depicted in the thermonuclear equation is one of the best example of an endothermic reaction. In addition, the endothermic process revolves around the idea that the system can also absorb the energy from its surroundings, in contrast to the idea of releasing its energy to its environment.
<u>Answer:</u> The amount of CO that is occupied in the room is 
<u>Explanation:</u>
We are given:
Concentration of CO =
by volume
This means that
of CO is present in 1 L of blood
To calculate the volume of cuboid, we use the equation:

where,
V = volume of cuboid
l = length of cuboid = 10.99 m
b = breadth of cuboid = 18.97 m
h = height of cuboid = 11.89 m

Converting this into liters, by using conversion factor:

So, 
Applying unitary method:
In 1 L of blood, the amount of CO present is 
So, in
of blood, the amount of CO present will be = 
Hence, the amount of CO that is occupied in the room is 