Answer:
The answer to your question is: b
Explanation:
a. Magnesium shares an electron somewhat unevenly from its 3s orbital with the 3p orbital of chlorine producing a mildly polar covalent bond. This option is wrong because Mg does not share electrons it loses electrons.
b. Magnesium loses and electron from the 3s and gives it up to the 3p of chlorine producing an ionic bond. This option is correct, Mg loses one electron and Cl receives it, the bond formed between Mg and Cl is ionic.
c. Magnesium does not react chemically with chlorine because magnesium gives up electrons, but chlorine only shares electrons. This answer is wrong, Mg and Cl react and produce MgCl₂.
d. Magnesium shares an electron from the 3s orbital with the 3p orbital of chlorine producing a covalent bond. Mg does not share electrons and is not able to produce covalent bonds.
For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
Multiply 10.49 by 12.993. that should be it. 130 grams ish?