A mixture can be separated. Everything in a mixture keeps it's own properties and are not chemically joined together. I am not completely sure about the compound. Although with the cake example, the ingredients have been mixed and kind of "fused" together upon baking. Hope this helps a little. (P.S. trail mix is a good example of a mixture.)
Answer:
Explanation:
Ionic (or electrovalent) compounds conduct electricity when there they are in the aqueous state/solution because the charges of ions of these compounds are what carry the electric charges in the aqueous solution as a result of free movement within the aqueous solution which they do not "have" when in there solid state (where they have a highly restricted movement/compacted structure).
The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
The answer is <span>Silicon, it also forms 4 bonds. Usually elements in the same group or vertical column in the periodic table all have similar chemical bonding properties. </span><span>It is just below carbon, so it has more similarities of properties with carbon. </span>
Answer:
b.) Br and Br
Explanation:
A covalent bond occurs when electrons are shared between two atoms causing them to form a bond.
A "pure" covalent bond refers to a nonpolar covalent bond. In these bonds, the electrons are shared equally between two atoms as a result of the absence of an (or very small) electronegativity difference. The purest covalent bond would therefore be between two atoms of the same electronegativity. Two bromines (Br) have the same electronegativity, thus making it the purest covalent bond.
Polar covalent bonds occur when electrons are shared unequally between two atoms. There is a larger electronegativity difference between the two atoms, but not large enough to classify the bonds as ionic. In this case, a.) and c.) are polar covalent bonds and d.) is an ionic bond.